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ORIGINAL ARTICLE

A model-assisted k-nearest neighbour approach to remove
extrapolation bias

STEEN MAGNUSSEN1, ERKKI TOMPPO2 & RONALD E. MCROBERTS3

1Natural Resources Canada, Canadian Forest Service, 506 West Burnside Rd., Victoria BC V8Z 1M5, Canada, 2Finnish

Forest Research Institute, Vantaa, FI-01301 Finland, 3USDA Forest Service, Northern Research Station, St Paul,

Minnesota, MN 55108, USA

Abstract
In applications of the k-nearest neighbour technique (kNN) with real-valued attributes of interest (Y) the predictions are
biased for units with ancillary values of X with poor or no representation in a sample of n units. In this article a model-
assisted calibration is proposed that reduces unit-level extrapolation bias. The bias is estimated as the difference in model-
based predictions of Y given the X-values of the true k nearest units and the k selected reference units. Calibrated kNN
predictions are then obtained by adding this difference to the original kNN prediction. The relationship is modelled between
Yand X with decorrelated X-variables, variables scaled to the interval [0,1] and Bernstein basis functions to capture changes
in Y as a function of changes in X. Three examples with actual forest inventory data from Italy, the USA and Finland
demonstrated that calibrated kNN predictions were, on average, closer to their true values than non-calibrated predictions.
Calibrated predictions had a range much closer to the actual range of Y than non-calibrated predictions.

Keywords: Bernstein basis functions, extrapolation bias, multivariate calibration, non-parametric prediction.

Introduction

The k-nearest neighbours (kNN) technique is an

appealing non-parametric approach to either uni-

variate or multivariate prediction of a desired attri-

bute (Y) based on the similarity in the ancillary

variable space (X) between a (target) unit for which

a prediction is desired, and a set of reference units

for which an observation of Y is available (Alt,

2001). The kNN prediction is a weighted linear sum

of the k reference units that are nearest in terms of

X-values to the target unit. Its ease and flexibility

have made it popular in forestry applications

(Franco-Lopez et al., 2001; Meng et al., 2007;

LeMay et al., 2008; Tomppo et al., 2008). However,

the technique is inherently biased, because no

prediction may be smaller (larger) than the smallest

(largest) observed Y-value.

Unlike model-based statistical prediction meth-

ods, the kNN technique is particularly vulnerable to

poor performance when the X-value of a target unit

has no close neighbours in the reference set. With

the kNN technique, a prediction for a unit with

ancillary values outside the X-domain defined by the

reference units will be identical to the prediction

made for the unit with the closest X-value inside the

domain of the reference units (Stage & Crookston,

2007; Fehrmann et al., 2008; McRoberts, 2009).

The net effect is a tendency to underestimate large

Y-values and overestimate small Y-values, not unlike

a regression to the mean effect (Krause & Pinheiro,

2007). Gaps between neighbouring X-values in a

sample of n reference units will be larger than in the

population (Stage & Crookston, 2007) which, every-

thing else being equal, introduces another source of

bias.

Experience has shown kNN estimates of a uni-

variate total to be nearly unbiased, at least when the

sample is relatively large and representative of the

population (Katila, 2006; Magnussen et al., 2009).

The unit-level bias is therefore mainly a concern in

unit-level applications, e.g. in databases (Stage &
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Crookston, 2007; Tomppo et al., 2008) and spatial

map displays (LeMay et al., 2008).

One way to address the extrapolation problem is

to lower the weights given to variables with poor

coverage (McRoberts, 2009) or outright drop them

(Stage & Crookston, 2007). However, with many

ancillary variables the ‘‘curse of dimensionality’’

(Scott, 1992, p. 195) makes it a daunting task to

find a kNN weighting scheme that achieves a desired

outcome (Tomppo & Halme, 2004). Using a smaller

number (k*) of reference units than the k that

minimizes the root mean-squared difference can, to

some extent, reduce the extrapolation bias, but the

gain is at the expense of a less efficient estimator

(Stage & Crookston, 2007).

In this study a model-based calibration of unit-

level kNN predictions is proposed that achieves a

correction of the relationship between actual Y-

values and the kNN predictions towards a 1:1 line

with an intercept of zero. The calibration requires

model-based predictions of the effect of using the k-

nearest reference units instead of the actual k-nearest

units in the population for making a prediction. To

this end, a simple working linear model for the

relationship between X and Y is entertained. The

model should provide robust and realistic estimates

of the effect on Y of a change in X. A search for the

best model is not needed as it would negate any

attraction of kNN. Instead, the flexible Bernstein

basis functions are used to capture the relationship

between Y and X (Lorentz, 1953). The calibration

procedure is demonstrated in simulated cluster and

simple random sampling (without replacement) in

artificial populations composed of actual unit-level

(plot) forest inventory data (Y) and Landsat ETM�
derived ancillary variables (X).

Materials and methods

Unit-level k-nearest neighbour estimator

Let U be a population composed of N units. We are

interested in a set of q attributes Y for the purpose of

estimating unit-level values of yi, i�1, . . . , N used

to estimate the population total (Ty) and in small-

area estimation. Y-values are only known for units

in a sample (s) of size n. The n sample units are

referred to as reference units and it is assumed that

they arise from probability sampling (Hansen et al.,

1983). A set of p ancillary variables X carrying

information about Y is known for every unit in the

population. A unit for which a kNN prediction is

made is called a target unit.

A general unit-level kNN estimator of Y for the ith

population unit (Haara et al., 1997) is

ỹi �
X
i�kj

wjyj ; j � s; i�1; . . . ;N ; (1)

where wj is a q�q matrix of weights and i � kj

means that the summation is taken over the k

(reference) units xj nearest to xi with respect to

some distance metric. For the sake of demonstra-

tion, ỹi is computed as the arithmetic mean of the Y-

values of the k selected reference units, i.e. wj in eq.

(1) is a diagonal matrix with elements k�1 along the

diagonal and 0 elsewhere. Euclidean distances be-

tween unit-level vectors of X-values are used to

identify the k-nearest neighbours. The kNN estima-

tor of a population total becomes

T̃y�
XN

i�1

ỹi: (2)

A unit average is estimated by dividing T̃y by N.

Calibration of unit-level k-nearest neighbour estimates

The proposed calibration of real-valued unit-level

kNN predictions builds on the well-known principle

that knowledge about the relationship between

sample-based (reference) predictor values and the

actual predictor values (target) can be exploited and

used to generate improved predictions (Brown,

1982; Moody & Woodcock, 1996; Gregoire &

Valentine, 1999; Katila et al., 2000).

The proposed calibration aims at lowering extra-

polation bias in ỹi. Extrapolation bias is more likely

to occur when the X-values of a target unit lie

outside the range(s) covered by the reference units or

in a gap not otherwise found in the population

distribution of X (Stage & Crookston, 2007). It

follows from the kNN estimator that target units

with similar X-values but not covered by the

reference units will have similar and potentially

seriously biased ỹ-values.

An indicator of the outlier status of a target unit

can be obtained by applying the kNN estimator to

obtain two kNN estimates of X for every target unit.

The first, called x̃
ref
i ; is estimated exclusively from the

reference units (i.e. x̃
ref
i �ai�kj wjxj ; j � s); while the

second, called x̃
pop
i , is the ‘‘true’’ kNN estimate of X

as it is estimated from the actual k nearest neigh-

bours in U (i.e. x̃
pop
i �ai�kj wjxj ; j � U ): When x̃

ref
i :

x̃
pop
i and the relationship between Y and X is

approximately multivariate linear in a neighbour-

hood around x̃
ref
i and x̃

pop
i ; one should expect that

ỹ
ref
i : ỹ

pop
i : Conversely, a large difference between

x̃
ref
i and x̃

pop
i suggests that ỹ

ref
i " ỹ

pop
i :

The potential effect of the difference x̃
pop
i �/x̃

ref
i on a

kNN prediction can be approximated if the following

simple working multivariate linear model for Y is

assumed:

Calibration of kNN extrapolation bias 175
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Y�F(X)B�J; (3)

where Y is an N�q matrix, F(X) is an N�r matrix

of transforms of X (detailed in the paragraph starting

with ‘‘To preserve . . .’’, below), B is an r�q matrix

of least squares regression coefficients (r�p) and J

is an N�q matrix of residuals. Given a sample and a

constrained least squares estimate of B, simple linear

algebra can be applied to predict, for every unit, a

ŷ
ref

i from the k-units in x̃
ref
i and a ŷ

pop

i from the k-

units in x̃
pop
i : Both are weighted (w) averages of k-

individual predictions, using the same weights as in

eq. (1). If the model in eq. (3) is correct, the

difference (ŷ
pop

i � ŷ
ref

i ) becomes an estimate of the

extrapolation bias in ỹi: Accordingly, the following

calibration of unit-level kNN predictions is pro-

posed:

ỹcal
i � ỹi�(ŷ

pop

i � ŷ
ref

i ): (4)

With the calibration in eq. (4), it is possible that

aU ŷ
pop

i � ŷ
ref

i "0; which raises the question of

whether the calibration should be constrained to

sum-to-zero or not. When it can be justified to

assume that T̃y is nearly unbiased, a sum-to-zero

restriction on the calibration is assured to conserve

this desired property. An element-by-element multi-

plication of ŷ
ref

i in eq. (4) by a set of constants (c1,

. . . cq) accomplishes this. The constants are cl �
T̂

pop
y(l)�(T̂

ref
y(l))

�1; l�1; . . . ; q; where T stands for a

total. In these examples, with small sample sizes,

the unconstrained calibration in eq. (4) was used.

To preserve the attraction of kNN as a simple and

flexible non-parametric multivariate predictor, the

choice of a working model should be straightfor-

ward. What is important is that the average change

in Y for a given change in X is captured adequately

by B. To capture all major trends and to minimize

model-based extrapolation errors, it is proposed to

fit eq. (3) with both Y and a decorrelated X scaled to

the interval [0,1] and to use a full set of orthogonal

constant, linear, quadratic and cubic Bernstein basis

functions for the transform functions (F) in eq. (3).

There are D � 1 Bernstein basis functions of degree

D (Lorentz, 1953, p. 30), so one constant, two

linear, three quadratic functions and four cubic

functions are obtained for each ancillary variable in

X. Hence, the dimension of F(X) in eq. (3) is N�r,

with r�10�p. Decorrelation of X is done via a

Cholesky decomposition (Rencher, 1995, p. 29).

The Bernstein D � 1 basis functions of degree D

are:

F(x; d;D)�
D

d

� �
xD(1�x)D�d ; d�0; . . . ;D: (5)

Bernstein basis functions are defined on the

interval [0,1] with 05F(x,d,D)51. To maintain

predictions in the interval [0,1] all regression coeffi-

cients were constrained to values between 0 and 1

with a global sum-to-one restriction. The scaling of

reference values of Y should reflect that their ranges

are probably less than in the population (Harter,

1970, p. 12). For this study, with strictly positive Y-

values, the sample ranges of Y were expanded by

multiplying attribute-specific sample maxima and

minima values by factors determined as the average

(over 1000 replications) of the ratio of the maxima

(minima) in samples of size N and n, drawn at

random from a distribution fitted to the observed

values of Y by the method of maximum likelihood.

Here, a two-parameter Weibull distribution was

chosen as it achieved (trait-by-trait) a good fit to

samples of Y. After fitting the model in eq. (3) with

the scaled data, the predictions are scaled back to

their original scale. Note that the rescaling of Y is not

a requirement; it can be dispensed with. However,

the scaling of Y offers a convenient method for

controlling (capping) extrapolations. Without a scal-

ing, examples of (impossible) negative predictions of

Y were seen, which would have to be addressed

separately or through a model choice (F) that

restricts predictions to their allowed range.

The proposed working model with cubic Bern-

stein basis functions is flexible and easy to imple-

ment, and should catch all major trends in the

relationship between Y and X. If higher order

trends are expected, it is easy simply to add higher

order Bernstein basis functions. Since the model is

not being used for actual prediction purposes,

issues of overfitting and collinearity are not a major

concern.

Calibration assessment

The proposed calibration procedure is demonstrated

in Monte Carlo (MC) simulations of equal prob-

ability sampling (without replacement) with either

equal-sized clusters (CLUwor) or single units

(SRSwor) from three artificial populations assembled

from actual inventory data. Results are based on

4000 MC replications of a sampling design with k

fixed at the value that, for a given sample size,

produced the lowest relative root-mean-square error

of an estimated total.

On average (across replicated samples) the rela-

tionship between yi and ỹi is ideally linear with a

slope (b1) of one and an intercept (b0) of zero. An

unbiased estimator would meet this condition with

no need for a unit-level calibration. However, since

unit-level kNN estimates are pulled towards their

sample average, and given the aforementioned ten-

dency to generate nearly identical estimates of Y for

target units with an X outside the range of the

176 S. Magnussen et al.
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reference units, the desired relationship will typically

have a slope greater than one and an intercept less

than zero. A successful calibration lowers the slope

towards one and raises the intercept towards zero. It

does that by extending the range of ỹcal
i relative to ỹi:

To assess the success of the proposed calibration,

therefore, sample-based regression coefficients in the

linear regression of yi on ỹcal
i and of yi on ỹi are

compared. The comparison is extended to coeffi-

cients in regressions using the averages /ỹcal
i and

/ỹi across the MC replications. The statistical sig-

nificance of departures from the ideal (slope�1,

intercept�0) is assessed with Hotelling’s T2 test

statistic (Rencher, 1995, p. 149). The same test is

also used to compare the coefficients of the two

regressions.

Extending the range of ỹi is also considered a

benefit of calibration since the range of ỹi is clearly

less than the natural range of yi (Stage & Crookston,

2007). Therefore, the impact of calibration on the

natural range of ỹcal
i is demonstrated. If a calibration

achieves the positive shift in the regression, one

should also expect to see a reduction in estimation

errors, but not necessarily a decline in the bias of a

total. Since the total bias in ỹi and ỹcal
i is expected to

be approximately equal (it depends foremost on k

and the chosen weighting scheme), the ratio of bias-

adjusted residuals is taken as an estimator of the

relative reduction in prediction errors.

Rcal
error �(ỹcal

i �yi�Mean(ỹcal
i �yi))

�(ỹcal
i �yi�Mean(ỹi�yi))

�1: (6)

Applications

The proposed model-assisted procedure for redu-

cing extrapolation bias in kNN applications is

demonstrated with three examples using actual

forest inventory data from Italy (IT), and from two

small artificial forests compiled from actual inven-

tory data from Finland and the USA. The data from

Finland and the USA have been used in an earlier

study on model-based estimation of root mean-

squared errors in kNN applications (Magnussen et

al., 2009). The Finnish data were collected from

forests on mineral and peat soils. These data have

been combined into a single data set called MIN&-

PEAT. The US data were originally from two

disjoint but similar areas (called FIA1 and FIA2 in

Magnussen et al. (2009). Here, they are combined

under the name of F1&2.

IT. This population of N�312 forest compart-

ments is located in the forests of Trentino-Alto Adige

(northern Italy), as detailed in Baffetta et al. (2009).

The interest variable (Y) is timber volume (VOL,

m3 ha�1). Stand-level volume estimates were ob-

tained by calipering each tree for diameter at breast

height and applying local volume tables. The mean

stand volume was 318 m3 ha�1 with an among-

stand standard deviation of 128 m3 ha�1. The

ancillary variables (X1, X2, . . .. , X6) are the average

within-stand digital numbers of spectral bands 1, 2,

3, 4, 5 and 7 from concurrent Landsat 7 ETM�
imagery. The Euclidean distance was used to deter-

mine the neighbour structure in X-space. Figure 1

shows scatterplots of stand volume against the six

ancillary variables after scaling X to the interval

[0,1]. The ancillary variables are all negatively

correlated with VOL (�0.58 to �0.37). Calibration

results are for a simple random sample size of n�20

and k�6.

MIN&PEAT. This is an artificial population of N�
3912 units arranged in 1304 clusters each with 3

units in a 1�3 array configuration. Units are on a

grid with 163 rows and 24 columns. A unit is a

quarter of a Landsat 7 ETM� image pixel. Each unit

has a forest inventory plot providing yi, i�1, . . . , N.

Unit-level data came from forest inventory plots in

the 9th Finnish National Forest Inventory located in

North Karelia and South Savo. The variables of

interest are Y1�quadratic mean diameter (cm) of

tree stems 1.3 m above ground (QMD), Y2�basal

area (m2 ha�1) of tree stems 1.3 m above ground

(BA), and Y3�total stem volume in (m3 ha�1)

(VOL). A trivariate single-index-model transform

Figure 1. Scatterplots of stand stem volume (VOL m3 ha�1)

against six scaled [0,1] and decorrelated ancillary variables

(X1, . . . , X6). Site�IT.
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(Härdle et al., 1993) of a nine-dimensional vector (xi)

of Landsat 7 ETM� pixel data was used as ancillary

variables X1, X2 and X3. The ancillary variables

were scaled to the interval [0,1]. Further details are in

Tomppo and Halme (2004). Figure 2 shows scatter-

plots of VOL against the three ancillary variables.

The spatial trend in X-values was modelled as

jsin(row�24�1)�cos(row�163�1)j and units

were placed on the grid to minimize the squared

departures from this trend. This placement gener-

ated an intracluster correlation (Cochran, 1977, p.

209) of 0.07 (QMD), 0.09 (BA) and 0.10 (VOL).

Figure 3 shows maps of the spatial distribution of X3

and VOL. Data averages and standard deviations (in

parentheses) are: QMD 19.2 (9 7.0) cm, BA 20.1

(9 7.9) m2 ha�1, and VOL 142.4 (9 90.7)

m3 ha�1. All results are based on cluster sampling

with n�20 and k�6. Multivariate estimators are

used throughout, but only VOL results are reported.

FIA1&2. This is an artificial population of N�4260

units arranged in 1065 clusters each with 4 units in a

2�2 array configuration. Units are on a grid with

142 rows and 30 columns. Unit-level data came

from the Forest Inventory and Analysis (FIA)

program of the US Forest Service (Bechtold &

Patterson, 2005) and represent forested areas in

Minnesota. A unit is a Landsat 7 ETM� pixel with a

colocated FIA subplot providing yi, i�1, . . . , N.

Variables in y are: Y1�number of trees ha�1

(TPH), Y2�basal area (m2 ha�1) (BA), and Y3�
merchantable volume (m3 ha�1) (VOL). A trivariate

single-index-model transform (Härdle et al., 1993)

of a 12-dimensional vector (xi) of Landsat 7 ETM�
derived pixel data (Magnussen et al., 2009) was used

as ancillary variables (X1, X2 and X3). The ancillary

variables were scaled to the interval [0,1]. Figure 4

shows scatterplots of VOL against the three ancillary

variables. The spatial trend in X-values was mod-

elled as j5 sin(column�142�1)�cos(0.5 row�
30�1)j and units were placed on the grid to

minimize the squared departures from this trend.

This placement procedure generated an intracluster

correlation of 0.08 (TPH), 0.07 (BA) and 0.06

(VOL). Figure 5 shows maps of the spatial distribu-

tion of X3 and VOL. Data averages and standard

Figure 2. Scatterplots of plot stem volume (VOL m3 ha�1)

against three scaled [0,1] and decorrelated ancillary variables

(X1, X2, X3). Site�MIN&PEAT.

Figure 3. Spatial distribution of X3 (top) and VOL (bottom) in

MIN&PEAT. (Only the first 50 rows are shown.) Clusters

(sampling unit) of three units arranged in a 1�3 array are

indicated with black gridlines.
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deviations (in parentheses) are: TPH 519 (9 420)

ha�1, BA 15.7 (9 11.9) m2 ha�1, and VOL 86.3

(978.6) m3 ha�1. All results are based on cluster

sampling with n�20 and k�8 and multivariate

estimators, but only VOL results are reported.

Results

IT. In a random sample of size 20 taken from a

population of size 312 the range of the six predictors

was reduced by an average between 30% (X2) and

37% (X5), and the median gap-size between neigh-

bouring X-values was approximately 12 times larger

than in the population. The average distance be-

tween two X-values in a sample (reference units) was

0.39 versus 0.18 in the population. A reduced range

and larger gaps in X-values of the reference units will

both contribute to extrapolation bias. For a sample

size n�20 and k�6 the non-constrained calibration

lowered the MC estimate of bias of total volume

from 3.3% to 1.6%. The kNN calibration achieved,

in 92% of the MC replications, a shift in the

regression of the true y on the kNN prediction

towards the desired 1:1 line. For calibrated kNN

predictions, the average sample-based estimate of

the slope was 1.1890.04 compared with 1.4690.08

for non-calibrated kNN predictions. Corresponding

estimates of intercepts were �60.2911.7 and

�155.9923.83, respectively. Hence, calibration

reduced the deviations in slope and intercept from

the desired values of 1 and 0 by approximately 60%.

Figure 6 shows the 95% bivariate quantile envelope

for the estimated slopes and intercepts. It is clear

that calibration, as a rule, not only shifted the

regressions towards the 1:1 line but also lowered

(by approximately 50%) the variation of the esti-

mates. Both ellipsoids in Figure 6 include the locus

of a zero intercept and slope of one. Only 1% of the

calibrated regressions differed significantly at the 5%

level from a 1:1 line, whereas 10% of the non-

calibrated regressions did. When the calibration

Figure 4. Spatial distribution of X3 (top) and VOL (bottom) in

MIN&PEAT. (Only the first 50 rows are shown.) Clusters

(sampling unit) of three units arranged in a 1�3 array are

indicated with black gridlines.

Figure 5. Spatial distribution of X3 (top) and VOL (bottom) in

FIA1&2. (Only the first 50 rows are shown.) Clusters (sampling

unit) of four units arranged in a 2�2 array are indicated with

black gridlines.
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occasionally introduced a negative shift in the

regression, it was always minor and of no practical

consequence.

In Figure 7, Y is plotted against the average of

4000 unit-level kNN predictions. The trend line for

non-calibrated predictions had a slope of 2.1690.14

and an intercept of �393.1947.8. In comparison,

the slope and intercept of calibrated predictions were

1.2690.1 and �88.0927.7, respectively. Both

trend lines deviated significantly from a 1:1 line

(pB0.01). The difference between sample-based

and average-population-based parameter estimates

is due to attenuation of sample-based estimates

owing to the sampling errors in individual kNN

predictions (Fuller, 1987, p. 3).

Bias-adjusted errors of calibrated kNN predictions

were 2098% lower than for non-calibrated predic-

tions. The chance of an inflated error was 0.2%.

Calibrated predictions displayed a wider range of

values than non-calibrated predictions. Estimated

stand-level volume per hectare varied from

60.6 m3 ha�1 to 760 m3 ha�1, while calibrated pre-

dictions varied (on average) from 152.6 m3 ha�1 to

513.1 m3 ha�1 or 52% of the actual range. In

contrast, non-calibrated predictions were (on aver-

age) between 215.0 m3 ha�1 and 443.8 m3 ha�1 or

33% of the actual range. The correlation between y

and ỹcal
i was, on average, 15.4% larger than between

y and ỹi: A stronger correlation was seen in 92% of

the MC replications. Calibration also produced a

7.6% lower mean absolute difference (MAD) be-

tween a kNN prediction and its true value.

MIN&PEAT. The average range of X-values in a

0.5% sample was only 33% (X1), 57% (X2) and

42% (X3) of the full range in the population. Gaps

in the X-values of reference units were, on average,

about 100 times larger than in the population. The

average distance of two reference units was approxi-

mately eight times larger than in the population.

From these figures one perceives a non-trivial risk of

extrapolation bias. For a sample size of 20 clusters

(i.e. 60 units) and k�6 the MC estimate of bias of

total volume was 1.2% for both non-calibrated and

unconstrained calibrated kNN predictions. Calibra-

tion achieved a shift in the regression of the true y on

the kNN prediction towards a 1:1 line in 88% of the

MC replications. Sample-based regressions with

calibrated predictions had an average slope and

intercept of 1.0390.11 and �4.44914.44, respec-

tively. Corresponding estimates for the non-cali-

brated predictions were 1.1290.14 and �17.549

18.11. Thus, the calibration reduced by 10% the

departure of the slope from 1 and by approximately

75% the departure of the intercept from 0. Figure 8

shows the 95% bivariate quantile envelope for slopes

and intercepts. Calibration has shifted the regres-

sions towards the 1:1 line and lowered the variation

in estimated slopes and intercepts by about 30%.

Figure 6. Bivariate quantile (95%) envelope for intercepts (b0)

and slopes (b1) in the regression of Y-values of VOL on k-nearest

neighbour (kNN) predictions. Dashed line�non-calibrated kNN

predictions; solid line�calibrated kNN predictions. Averages of

sample-based estimates of b0 and b1 are indicated (grey�non-

calibrated; black�calibrated). Site�IT.

Figure 7. Scatterplot of 100 random selections of unit-level values

of volume (VOL m3 ha�1) against the average k-nearest neigh-

bour prediction. Circles�non-calibrated; triangles�calibrated.

Ordinary least squares trend lines are indicated (grey�non-

calibrated; black�calibrated). A 1:1 line (black, dashed) is

provided for reference. Site�IT.
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Less than 1% of the regressions deviated signifi-

cantly at the 5% level from a 1:1 line (Hotelling’s T2

test).

When y was regressed on the average kNN

prediction the trend line for non-calibrated predic-

tions had a slope of 1.2790.03 and an intercept of

�41.1295.03 (Figure 9), whereas in regression

with averages of calibrated predictions the slope

was 1.0590.03 and the intercept �8.7894.17.

Only the latter was not significantly different from

a 1:1 line (p�0.08).

Bias-adjusted errors of calibrated kNN predictions

were just 2.791.8% lower than for non-calibrated

predictions. The chance that calibration introduces a

small inflation of bias-adjusted errors was 5.8%.

Calibrated predictions of unit volume per hectare

varied (on average) from 14.1 m3 ha�1 to

359.0 m3 ha�1. Corresponding numbers for the

non-calibrated predictions are 44.4 m3 ha�1 and

271.7 m3 ha�1. As a result, the calibrated predictions

capture approximately 60% of the actual range of 0�
585 m3 ha�1, while non-calibrated predictions only

capture approximately 40% of the actual range. The

correlation between y and ỹcal
i was, on average, 6.5%

larger than the correlation between y and ỹi: Calibra-

tion lowered MAD by approximately 1.0%.

FIA1&2. As in the previous example, a much

smaller portion (70�73%) of the range of X-values

was seen in the reference units compared with the

full range of values in the population. In addition,

there were much larger gaps (on average, approxi-

mately 80 times larger) and a larger (130%) average

distance between reference X-values than seen in the

population. From these figures the opportunity to

reduce extrapolation bias appears favourable. With a

sample size of 20 clusters (i.e. 80 units) and k�8 the

MC estimate of bias of total volume was 0.2% for

the calibrated and 1.1% for the non-calibrated kNN

predictions. Calibration shifted the regression of the

true y on the kNN prediction towards a 1:1 line in

94% of the MC replications. Sample-based regres-

sions with calibrated predictions had an average

slope and intercept of 1.0590.20 and �3.729

15.90, respectively. Corresponding estimates for

the non-calibrated predictions were 1.0990.22 and

�7.37918.52. Figure 10 illustrates the modest

effects of calibration in the form of slightly shifted

95% bivariate quantile envelopes for slopes and

intercepts.

When y was regressed on the average calibrated

kNN prediction the trend line had a slope of 1.109

0.06 and an intercept of �9.0795.62 (Figure 11).

Departures from a 1:1 line were not significant (p�
0.27). In contrast, the trend line for the average non-

calibrated predictions had a slope 1.3090.08 and an

intercept of �26.496.83 which constitute a sig-

nificant departure from a 1:1 line (p�0.001).

Unit-level volume per hectare had a data range of

300 m3 ha�1 (�100%). Calibrated predictions

Figure 8. Bivariate quantile (95%) envelope for intercepts (b0)

and slopes (b1) in the regression of Y-values of VOL on k-nearest

neighbour predictions. Dashed line�non-calibrated predictions;

solid line�calibrated predictions. Averages of sample-based

estimates of b0 and b1 are indicated (grey�non-calibrated;

black�calibrated). Site�MIN&PEAT.

Figure 9. Scatterplot of 100 random selections of unit-level values

of volume (VOL m3 ha�1) against the average k-nearest neigh-

bour prediction. Circles�non-calibrated; triangles�calibrated.

Ordinary least squares trend lines are indicated (grey�non-

calibrated; black�calibrated). A 1:1 line (black, dashed) is

provided for reference. Site�MIN&PEAT.
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displayed an average range of 212 m3 ha�1 (71%),

whereas non-calibrated had a range of just

149 m3 ha�1 (50%). All other calibration effects

were negligible.

Discussion

Despite its popularity, it is well known that unit-level

kNN predictions can be seriously biased (LeMay et

al., 2008; Eskelson et al., 2009; McRoberts, 2009).

Out-of-sample extrapolation is a major source of bias

regardless of whether extrapolation goes beyond the

range of the sample data (X) or into gaps of X that

are artefacts of sampling (Stage & Crookston, 2007).

The calibration technique proposed here mitigates

both types of bias, but not the bias that stems from a

large variation in Y-values for a given X. The

MIN&PEAT and F1&2 examples have a large

variation in Y for a given X which explains, in

part, why the attempt to reduce extrapolation bias

was (seemingly) less efficient in these two examples

than in the example from Italy. The much smaller

sample fractions in the case of MIN&PEAT and

F1&2 create a greater risk of extrapolation bias, but

if the relationship between X and Y is rather weak

the bias generated by having widely different Y-

values for a single X-value may be the most

important source of bias (Stage & Crookston, 2007).

When the X-variables used in a kNN application

contain significant information about the attributes

of interest (Y), a prediction based on the k nearest

reference units in a sample will be different from a

prediction based on the actual k nearest units in the

population. The latter would be a better prediction,

in terms of both bias and precision. The challenge is

to quantify the expected shift between the two

predictions and then adjust sample-based predic-

tions accordingly. Calibration is therefore invariably

model based (Brown, 1982). In applications with

sample sizes n much smaller than the population size

N, the k reference units selected for making a kNN

prediction will in most cases be different from the

actual k nearest neighbours in the populations.

The effect of this selection differential depends on

the nature and strength of the relationship between

X and Y. The examples presented here suggest that

the most important benefit of calibration is a sizeable

extension of the range of predicted values towards

their actual range. This is accomplished without

adverse impact on overall bias, with a high chance of

modest positive effects on errors, and with the

assurance that in the long run the trend line between

actual and predicted values will be closer to a 1:1

line. Results from FIA1&2 suggest that these bene-

fits materialize even when the relationship between

X and Y is weak. The scaling of the Y-values pursued

here to control extrapolation errors has not con-

tributed to the partial recovery of the natural range

of the Y-variables. All operators acting on Y

are strictly linear in Y; hence, the effect of a scaling

is completely removed by an inverse scaling.

Figure 10. Bivariate quantile (95%) envelope for intercepts (b0)

and slopes (b1) in the regression of Y-values of VOL on k-nearest

neighbour predictions. Dashed�non-calibrated predictions; solid

line�calibrated predictions. Averages of sample based estimates

of b0 and b1 are indicated (grey�non-calibrated; black�cali-

brated). Site�FIA1&2.

Figure 11. Scatterplot of 100 random selections of unit-level

values of volume (VOL m3 ha�1) against the average k-nearest

neighbour prediction. Circles�non-calibrated; triangles�cali-

brated. Ordinary least squares trend lines are indicated (grey�
non-calibrated; black�calibrated). A 1:1 line (black, dashed) is

provided for reference. Site�FIA1&2.
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The proposed calibration does not seem to have any

adverse effects on the correlation among predicted

Y-values. In the three examples, the pairwise correla-

tion coefficients of calibrated kNN predictions were

never larger than the coefficients of non-calibrated

predictions. On average, they were 0.03 closer to the

actual population values.

Calibration should be straightforward and easy to

implement, otherwise the kNN technique would lose

its appeal (Haara et al., 1997). The present model-

ling approach (with decorrelated X variables, X and

Y confined to the interval [0,1], and orthogonal

Bernstein basis functions) is easy to implement in

any programming language. The Bernstein functions

were limited to capture constant, linear and cubic

trends, but when deemed appropriate an extension

to quartic or even quintic trends is easy to imple-

ment. Alternatively, a model-assisted calibration is

also possible with a strictly non-linear model as long

as the chosen model can be supported by external

knowledge.

A decorrelation of X-values is routine unless there

is redundancy in the selected X-variables, in which

case one or more redundant variables should be

eliminated (Li & Wang, 2007; Wang & Xia, 2008).

The orthogonal basis functions effectively remove

collinearity issues and, finally, confining Y to the

unit intervals offers an effective control on extra-

polations. Prior knowledge of the natural upper and

lower limits of Y is preferable to simulation-based or

parametric estimation of these limits (Sarhan &

Greenberg, 1962). In large populations, the time to

find the k nearest neighbours to each unit does add

to computing time, but efficient search algorithms

are available (Finley & McRoberts, 2008).

Given that calibrated predictions, just like the

original kNN predictions, can be viewed as (model-

based) proxies for the actual Y-values, the analyst

can still use the empirical (probability-based) differ-

ence estimator (Baffetta et al., 2009) or any other

suitable estimator (Magnussen, McRoberts &

Tomppo, 2009, unpublished results) for calculating

the sampling variance of an estimated total. An issue

may arise on how to count degrees of freedom

(Särndal et al., 1992, p. 222). When the spatial

consistency of kNN predictions is important a

correction procedure by Barth et al. (2009) may be

applied to calibrated predictions.

In conclusion, calibration of kNN predictions may

be recommended as a routine when unit-level

predictions are desired in their own right (Maselli

et al., 2005; Eskelson et al., 2009), and for small-

area estimation (Katila, 2006). In small-area estima-

tion, the net effect of using sample-based k-nearest

units instead of the actual k-nearest units can be

expected to vary among subpopulations owing to

varying degrees of extrapolation (Tomppo et al.,

1999; Fehrmann et al., 2008). A preliminary assess-

ment of the need for a calibration (McRoberts,

2009) may take more time than implementing the

proposed calibration procedure.

Acknowledgements

Data for the IT population were kindly made

available by Dr Piermaria Corona, University of

Tuscany, Department of Forest Environment and

Resources. We are grateful to three anonymous

journal referees and the Editor for numerous con-

structive and helpful comments and suggestions to

an earlier version of this manuscript

References

Alt, H. (2001). The nearest neighbor. Computational Discrete

Mathematics: Advanced Lectures, 2122, 13�24.

Baffetta, F., Fattorini, L., Franceschii, S. & Corona, P. (2009).

Design-based approach to the kNN technique for coupling

field and remotely sensed data in forest surveys. Remote

Sensing of Environment, 113, 463�475.
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